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 量子位相があることにより、超伝導体中では磁束は量子化され、マイスナー効

果は起きる。従来の超伝導では超伝導の位相は一つであり、磁束量子は Φ0 =

ℎ

2𝑒
 の整数倍に量子化される。(ここで、ℎは角運動量量子（プランク定数）、𝑒 >

0は素電荷。) マイスナー状態は整数値が零の場合と整理される[1]。 

 量子位相が複数ある「多成分超伝導」の場合には、磁束の分数量子化が起きる

可能性があり、多くの理論的な研究がなされている[2]。 

 「多成分超伝導」には、スピン三重項超伝導や、多バンド型多成分超伝導[3]が

ある。なかでも、多バンド型多成分超伝導の模擬系として開発された「磁場侵入

長より薄い超伝導二層で構成する超薄超伝導二層膜」は、デバイス的にも作製可

能で、実験研究に適している[4]。超薄超伝導二層膜は、磁場からはほぼ重なっ

て見え、各層が各成分に相当する「二成分超伝導」になる。 

 図 1 は、ニオブの超薄超伝導二層膜における、分数磁束量子を持つ分数渦の

実験例である [5]。多成分超伝導の特徴的なトポロジーとしての「無磁場下でも

存在できる孤立かつ自立した分数渦」[6] を、初めてとらえたものである。生成

した分数磁束量子は、超伝導を使ったメモリや量子ビットの「位相シフター」と

しても使うことができ[7]、産業的応用にも期待している。 

図１において、分数渦を発生させるために「上の層だけに穴を開ける」という

手法が採用されている。このようにすることで、穴の縁を跨ぐ超伝導環電流経路

は、上の層では「閉じなくなり」、その経路においては位相の量子化（位相の傾

きの経路上での総積分量が 2πラディアンの整数倍）が要求されない。下の層で

は位相は零に量子化されているのであるが、成分間位相差モード [8]による位相

シフトが加わるため、量子化条件が骨抜きにされてしまう。結果として、穴の

「縁」に、「常伝導核も、渦中心での電流の発散も伴わない」、特異点なしの渦が

発生することがモデル計算でも示されている（図 2） [9]。通常、超伝導環電流

によって、磁場は渦の中心に集められるが（ヒッグス機構、もしくはマイスナー

効果）その機構が働かなくなり、磁場が広がってしまう。量子化条件により一度

は超伝導中で質量を得た電磁場が、量子化条件の破壊によって、質量の多くを失

う。低質量で空間に広がった状態という意味を込めて、この状態を「ダークマイ

スナー状態」と呼んでいる[6]。 

ダークマイスナー状態は「量子化が破綻した量子凝縮相」という、今までは



数学的にはまともに扱われたことがない状態である。物理的には、分数渦の前

駆状態の一つとなっていると考えられ、その関係を今後明らかにできればと考

えている。そのために、ダークマイスナーを実現するダークマイスナーチップ

を設計・開発中であり、このチップの動作を目指している [10]。 

図１ 分数磁束量子の観測例。左上がデバイスの模式図。右図は実際のデバイス（量子分割

素子）の写真。左下の二つのパネルは、分数渦の磁場イメージで、走査型 SQUID 顕微鏡を

使って測定したもの。右パネルは通常の磁束量子を持つ渦。左パネルに分数磁束量子を持つ

渦が示されている。参考文献[5]より。 

図２ 上だけ穴の開いた超薄超伝導二層膜における分数渦のモデル計算。左は磁場と電流密度。

右上はモデルの模式図。計算では、穴を中心からずらしている。ジョセフソン電流密度 jc,超伝導

コヒーレンス長 ξ、磁場侵入長λの値は図中のものを使用。右下図は、通常の渦と分数渦のエネ

ルギーについての計算結果。分数渦がエネルギー的に安定になる磁場領域が存在する。参考文献

[9]より。 
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