Gyroid Minimal Surface as Proton Conduction Pathway

Takahiro Ichikawa^{1,*}

¹Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan *email: t-ichi@cc.tuat.ac.jp

Bicontinuous cubic (Cub_{bi}) phase is a kind of nano-segregated liquid-crystalline (LC) phases in which both of two incompatible molecular parts form 3D continuous domains.^[1] It has been found that Cub_{bi} phases appear between lamellar and columnar phases both in the case of lyotropic liquid crystals and thermotropic ones. The volume balance between the two incompatible parts is one of the critical parameters for designing liquid crystals forming Cub_{bi} LC assemblies. To date, we have focused on ionic liquid crystals having zwitterionic headgroups.^[2,3] For example, we designed and synthesized pyridinium-based amphiphiles having zwitterionic headgroups. Although it forms only layered smectic phases in the pristine states, it co-organized into Cub_{bi} LC phases in the presence of bis(trifluoromethane)sulfonimide (HTf₂N).^[3] It can be explained by the formation of ion pairs between the pyridinium zwitterion part and HTf₂N through an ion exchange and the increase of the volume of the ionic parts. The Cub_{bi} LC assemblies have a hydrophilic gyroid minimal surface where sulfonate group sit on densely and periodically. When a suitable amount of water is added to the Cub_{bi} LC assemblies, a 3D continuous water nanosheet is created, which function as proton conduction pathway.

Figure 1. Induction of bicontinuous cubic phases for amphiphilic zwitterions.

Based on the molecular design of the amphiphilic zwitterions, we have recently succeeded in the development of a gemini-type amphiphilic zwitterion monomer forming Cub_{bi} phases.^[4] UV irradiation for the monomer in Cub_{bi} phases leads to the formation of self-standing and insoluble polymer films with preserving the gyroid nanostructures. The polymer film shows quite high proton conductivity in the order of 10^{-2} S cm⁻¹ in the H₂O-absorbed condition.

Figure 2. Design of gyroid nanostructured polymer films using a polymerizable amphiphilic zwitterion.

References

- [1] M. Impéror-Clerc, Curr. Opin. Colloid Interface Sci., 9, 370 (2005)
- [2] S. Ueda, J. Kagimoto, T. Ichikawa, T. Kato, and H. Ohno Adv. Mater., 23, 3071 (2011)
- [3] T. Ichikawa, T. Kato, H. Ohno, J. Am. Chem. Soc., 134, 11354 (2012)
- [4] T. Kobayashi, Y. Li, A. Ono, X.-b. Zeng, T. Ichikawa, Chem. Sci., 10, 6245 (2019)
- [5] T. Kobayashi, Y. Li, A. Ono, X.-b. Zeng, T. Ichikawa, Chem. Sci., 10, 6245 (2019)